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Abstract: Probabilistic Seismic Hazard Assessment (PSHA) has the goal to evaluate annual frequencies of 

exceeding a given ground motion Intensity Measure. One important parameter in the seismicity models used 

in PSHA is the maximum magnitude that can be expected in a region. This is true in particular for nuclear 

safety applications where higher return periods need to be considered. This paper describes an improved 

approach for the estimation of the maximum magnitude in the truncated GR law by means of a Bayesian 

approach involving extreme value statistics and accounting for uncertainties. The method to constructs the 

likelihood function based on the distribution of extremes of the truncated GR law and is an improvement of 

former developments by EPRI and further promoted by USNRC. In the proposed method, only the 

completeness period of the maximum observed earthquake is required, so that there is no need to determine 

and use the exact completeness periods for magnitude bins of smaller events and to introduce the associated 

uncertainties. This makes the approach easy to implement and to apply. Eventually we highlight possible 

impact on probabilistic hazard assessment results. 

 

1. Introduction 

Probabilistic Seismic Hazard Assessment (PSHA) has the goal to evaluate annual frequencies of exceeding 

a given ground motion Intensity Measure such as PGA (Peak Ground Acceleration), PSA (Pseudo Spectral 

Acceleration) etc. For this purpose, it is necessary to describe occurrence rates of earthquakes and the 

distribution of their magnitudes. This is the step 2 in the Figure 1. The most popular distribution of magnitudes 

is the exponential distribution from the Gutenberg-Richter (GR) law. Numerous studies and applications 

showed that the GR distribution is a reasonable model for defining the distribution of magnitudes in the lower 

and moderate magnitudes ranges. However, it deviates from the log-linear model in the higher frequency 

range. For this reason and to account for finite energy of faults, the GR distribution is generally truncated at a 

maximum possible magnitude value 𝑚𝑚𝑎𝑥. The justification of the choice of 𝑚𝑚𝑎𝑥 from physics or simple 

statistics is not straightforward. Concurrently, recent analyses showed that the maximum magnitude can have 
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a major impact on the hazard curve when high return periods as required for safety analysis of NPP (20 000 

years) are considered.  

 

Figure 1: PSHA methodology. 
 

The theory of statistics of extremes has been applied in engineering seismology since the early ‘fifties by 

different authors such as Nordquist, 1945, Epstein & Lomnitz, 1966. The developments concern both the 

estimation of 𝑚𝑚𝑎𝑥 of the truncated GR distribution and the direct estimation of the tails of the magnitude 

distribution by the generalized extreme value and Pareto distributions. Pisarenko et al., 2014, adopt the more 

general framework of the generalized extreme value distribution. The theory of extreme value statistics shows 

that the generalized extreme value distribution is the limit distribution of the maximum, of a series of 

independent random variables with same distribution under the condition of appropriate normalization. 

However, the scarcity of data in low seismicity regions can make it difficult to apply the latter methods. On the 

other hand, it is well known that the maximum likelihood estimator (MLE) of the magnitude used to truncate 

the GR law is biased (Kijko, 2004). The maximum likelihood estimate corresponds to the maximum of the 

likelihood function which is always equal to the highest observed magnitude mmaxobs in this case. As the number 

of observed earthquakes and thus the sample size n increases it becomes more and more likely that mmaxobs 

is the true mmax and the likelihood function gets more and more concentrated around this value. However, 

when increasing the sample size n, then the estimator converges to the “true” value but from below. Kijko 

developed a bias corrected maximum likelihood estimator to estimate mmax. The derivation of the correction 

term is however based on some simplifying assumptions. 

This paper describes an improved approach for the estimation of the maximum magnitude in the truncated GR 

law by means of a Bayesian approach involving extreme value statistics and accounting for uncertainties based 

on Zentner et al (2020). The Bayesian updating approach adopted here allows for the combination of different 

sources of information, and to overcome the problem of bias of the simple maximum likelihood estimator (EPRI 

1994, USNRC 2012). 

The method to constructs the likelihood function based on the distribution of extremes of the truncated GR law 

and is an improvement of former developments by EPRI, see Johnston (1994), and further promoted by 

USNRC (2012). In the proposed method, only the completeness period of 𝑚𝑚𝑎𝑥𝒐𝒃𝒔 is required, so that there is 

no need to determine and use the exact completeness periods for magnitude bins of smaller events and to 

introduce the associated uncertainties. The development of the prior distribution of maximum magnitude relies 

on drawing analogies to tectonically comparable regions to increase the dataset for the development of generic 

distribution that can be updated for the considered region. This makes the approach easy to implement and to 

apply.  
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2. Method 

 

2.1 Likelihood function derived from the distribution of extreme magnitudes. 

Under the assumption of Poissonian occurrence, the cumulative density function (cf) function of maximum 

magnitudes over the period , reads: 

𝐺(𝑚) = 𝑒𝑥𝑝[−𝜆0𝜏(1 − 𝐹𝑀(𝑚))]    (1) 

  
where 𝜆0 is the annual rate of earthquakes and 𝑓𝑀(𝑚) is the pdf of magnitudes. It is possible to derive the 

distribution of maxima accounting for the truncated GR law with upper bound 𝑚𝑚𝑎𝑥 and lower bound 𝑚𝑚𝑖𝑛. 
In this case, we obtain the following expression for  𝑚𝑚𝑖𝑛 ≤  m ≤  𝑚𝑚𝑎𝑥  : 
 

𝐺(𝑚) = exp [−𝜆0𝜏 (
exp(−𝛽𝑚𝑚𝑎𝑥)−exp(−𝛽𝑚)

exp(−𝛽𝑚𝑚𝑎𝑥)−exp(−𝛽𝑚𝑚𝑖𝑛)
)]    (2) 

Where we have written 𝜆0 for the annual rate of earthquakes with magnitude larger than 𝑚𝑚𝑖𝑛.  
 
The Bayesian updating allows for a robust and unbiased estimation. The likelihood functions are defined 
based on the extreme value distributions for Poissonian occurrences using the equations (2).  
 
The parameters that define the likelihood function are the durations and the values of the maxima over this 

time interval.  Numerical analyses showed that the result is the same when the catalogue is partitioned into 

equal intervals and the block maxima are used or when the maximum observed earthquake on the whole 

duration is considered. Since 𝑚𝑚𝑎𝑥𝑜𝑏𝑠 is the largest earthquake observed in the zone, we know that all other 

earthquakes observed over the period T of the catalogue are less or equal than this value. We use this 

information to write the likelihood function as the probability that the largest magnitude in the time interval T is 

less than 𝑚𝑚𝑎𝑥𝑜𝑏𝑠 (Zentner et al 2020): 

𝐿(𝑜𝑏𝑠|𝑚𝑚𝑎𝑥) = 𝐺(𝑚𝑚𝑎𝑥𝑜𝑏𝑠|𝑚𝑚𝑎𝑥)      (3) 
 
This approach can be applied even if 𝑚𝑚𝑎𝑥𝑜𝑏𝑠  is outside considered completeness interval T. It allows 

considering the whole catalogue without considering the issue of completeness for smaller events, i.e. 

completeness other than for mmaxobs. 

 
Figure 2: Illustration of likelihood functions obtained when accounting for uncertainty in b-value and 

completeness. 
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2.2 Magnitude and G-R parameter uncertainty 

The impact of the uncertainty of the b-value and completeness on the likelihood function are highlighted in 

Figure 2. In addition, in Zentner et al (2020), the magnitude uncertainty has been analyzed based on numerical 

experiments with simulated catalogs. The standard-deviation (std) on the simulated magnitudes has been 

introduced with a dependance on the year observation. More precisely, the more ancient the observation, the 

higher the uncertainty, in agreement with values reported in FCAT 17 earthquake catalogue (Manchuel et al., 

2017). It is found that the biais increases with true magnitude while the standard deviation is constant. This 

can be introduced in the updating procedure by means of an empirical distribution derived from the simulations. 

However, the biais depends not only on the maximum magnitude but also on the GR parameters and needs 

to be determined for the zone or region under study. Here we consider the mountainous zones in France with 

results given in the Figure 4 below. 

 

Table 1 Magnitude uncertainty: std for different years of observation 

 <1900 <1950 <1975 today 

high 0.5 0.35 0.25 0.1 
 

 

 
Figure 4: Mean and std of the difference between the observed mmaxobs and the true mmaxobs estimated from 

5000 catalogues for French mountainous zones. 
 

Rhoades (1996) pointed out that observed magnitudes have an associated bias that depends on the 

magnitude uncertainty. He derived the distribution of the biais and uncertainty with respect to the true 

magnitude m as: 

𝑓(𝑚|𝛽, 𝑥, 𝜎)~𝑁(𝑚 − (𝑥 − 𝜎2𝛽), 𝜎2) 

Where x is the observed magnitude, 𝜎 is the associated standard deviation and 𝛽 is the parameter from the 

G-R relation. Here we are interested in the maximum magnitude uncertainty, work is ongoing to check whether 

a (semi) analytical distribution can be derived for the maximum magnitude uncertainty. 

 

2.3 Prior distribution 

The implementation of the Bayesian approach requires the introduction of initial knowledge by means of the 

prior distribution. The prior distribution developed for France by Ameri et al 2015 are shown in Figure 5 below. 
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Figure 5: Priori distribution determined for France compared to former distributions from EPRI and CEUS, 
figure from Ameri et al (2015). 

 

3. Application 

In what follows, we apply the EPRI and the new Bayesian updating approach to French data from catalogue 

FCAT17 (Manchuel et al., 2017) considering magnitude uncertainty as explained above and the French prior 

distributions. Figure 6 shows the data from the catalogue for the considered French mountainous domains 

gathered in a macrozones of active regions (Ameri et al 2015). The largest observed magnitude in this 

macrozone is  𝑚𝑚𝑎𝑥𝑜𝑏𝑠 = 6,7, and it occurred within the completeness period T, highlighted by the vertical red 

bars. 

 

Figure 6: Data from earthquake catalogue for the considered French macrozone. 
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Figure 7: Prior and updated maximum magnitude distribution without accounting for magnitude and 

parameter uncertainty (left) and when considering  uncertainty as described above (right) 

 
Figure 7 shows the results of the Bayesian updating of the prior distributions of maximum magnitudes. Due to 
the uncertainty related to the observed mmaxobs, the likelihood function with uncertainty also allows for maximum 
magnitude values below the observed one, although higher magnitude values become more likely. The 
respective statistical values for the posterior distribution are given in table 2 for the truncated prior and 
considering prior without truncation. Results are very similar showing that the prior truncation does not have a 
significant impact on the result. 

 
Table 2 : Statistics of the posterior distribution of 𝑚𝑚𝑎𝑥  for truncated Gaussian prior distribution: mean, median 

and 5%, 95% fractiles. The results without truncation of the Gaussian prior a given in parenthesis. 

Method Mean Media
n 

5% CI 95% 
CI 

This approach, 
with 
uncertainties 

6.72 
(6.73) 

6.70 
(6.71) 

6.25 
(6.25) 

7. 22 
(7.27) 

 

4. Conclusions 

We have proposed a new method that combines the distribution of extreme values of the truncated GR law 

with the Bayesian updating approach. In contrast to other existing methods, it allows for considering uncertainty 

on the GR parameters and the observed magnitudes. The simulated catalogues allowed for evaluating the 

bias (mean) and the std of the distribution of the difference between the true and the observed mmaxobs. The 

simulated results allowed to validate the approach and confirmed that the uncertainty on mmaxobs and the GR 

parameters can be integrated in the updating procedure in a straightforward way.  

The proposed approach is easy implement since it requires only knowledge on the maximum magnitude and 

the associated completeness interval to update the distribution of maximum magnitudes. 
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